Best Mining Solutions For Everyone, Get a Free Quote.

Zhengzhou, China

[email protected]


  1. Home
  2. Crushing Plant
  3. iron ore in mining and mineral processing

iron ore in mining and mineral processing

Crushing Plant

Crushing Plant

The combination crusher is a new generation high efficiency crushing machine designed and researched by integrating the domestic and foreign crusher technology with the same kinds and optimizing the main technical parameters.
[email protected]
Sent Message Chat Online

We Provide You The Highest Quality Mining Machine That Meets Your Expectation.

Need A High Quality Mining Machine For Your Project?

Contact With Us

You May Also Like

iron processing | britannica

Iron (Fe) is a relatively dense metal with a silvery white appearance and distinctive magnetic properties. It constitutes 5 percent by weight of the Earth’s crust, and it is the fourth most abundant element after oxygen, silicon, and aluminum. It melts at a temperature of 1,538° C (2,800° F)

Iron is allotropic—that is, it exists in different forms. Its crystal structure is either body-centred cubic (bcc) or face-centred cubic (fcc), depending on the temperature. In both crystallographic modifications, the basic configuration is a cube with iron atoms located at the corners. There is an extra atom in the centre of each cube in the bcc modification and in the centre of each face in the fcc. At room temperature, pure iron has a bcc structure referred to as alpha-ferrite; this persists until the temperature is raised to 912° C (1,674° F), when it transforms into an fcc arrangement known as austenite. With further heating, austenite remains until the temperature reaches 1,394° C (2,541° F), at which point the bcc structure reappears. This form of iron, called delta-ferrite, remains until the melting point is reached

The pure metal is malleable and can be easily shaped by hammering, but apart from specialized electrical applications it is rarely used without adding other elements to improve its properties. Mostly it appears in iron-carbon alloys such as steels, which contain between 0.003 and about 2 percent carbon (the majority lying in the range of 0.01 to 1.2 percent), and cast irons with 2 to 4 percent carbon. At the carbon contents typical of steels, iron carbide (Fe3C), also known as cementite, is formed; this leads to the formation of pearlite, which in a microscope can be seen to consist of alternate laths of alpha-ferrite and cementite. Cementite is harder and stronger than ferrite but is much less malleable, so that vastly differing mechanical properties are obtained by varying the amount of carbon. At the higher carbon contents typical of cast irons, carbon may separate out as either cementite or graphite, depending on the manufacturing conditions. Again, a wide range of properties is obtained. This versatility of iron-carbon alloys leads to their widespread use in engineering and explains why iron is by far the most important of all the industrial metals

iron processing | britannica

There is evidence that meteorites were used as a source of iron before 3000 bc, but extraction of the metal from ores dates from about 2000 bc. Production seems to have started in the copper-producing regions of Anatolia and Persia, where the use of iron compounds as fluxes to assist in melting may have accidentally caused metallic iron to accumulate on the bottoms of copper smelting furnaces. When iron making was properly established, two types of furnace came into use. Bowl furnaces were constructed by digging a small hole in the ground and arranging for air from a bellows to be introduced through a pipe or tuyere. Stone-built shaft furnaces, on the other hand, relied on natural draft, although they too sometimes used tuyeres. In both cases, smelting involved creating a bed of red-hot charcoal to which iron ore mixed with more charcoal was added. Chemical reduction of the ore then occurred, but, since primitive furnaces were incapable of reaching temperatures higher than 1,150° C (2,100° F), the normal product was a solid lump of metal known as a bloom. This may have weighed up to 5 kilograms (11 pounds) and consisted of almost pure iron with some entrapped slag and pieces of charcoal. The manufacture of iron artifacts then required a shaping operation, which involved heating blooms in a fire and hammering the red-hot metal to produce the desired objects. Iron made in this way is known as wrought iron. Sometimes too much charcoal seems to have been used, and iron-carbon alloys, which have lower melting points and can be cast into simple shapes, were made unintentionally. The applications of this cast iron were limited because of its brittleness, and in the early Iron Age only the Chinese seem to have exploited it. Elsewhere, wrought iron was the preferred material

Although the Romans built furnaces with a pit into which slag could be run off, little change in iron-making methods occurred until medieval times. By the 15th century, many bloomeries used low shaft furnaces with water power to drive the bellows, and the bloom, which might weigh over 100 kilograms, was extracted through the top of the shaft. The final version of this kind of bloomery hearth was the Catalan forge, which survived in Spain until the 19th century. Another design, the high bloomery furnace, had a taller shaft and evolved into the 3-metre- (10-foot-) high Stückofen, which produced blooms so large they had to be removed through a front opening in the furnace

Recent Posts