Best Mining Solutions For Everyone, Get a Free Quote.

Zhengzhou, China

[email protected]

Blogs

  1. Home
  2. Ball Mill
  3. professional efficient ball mill

professional efficient ball mill

Ball Mill

Ball Mill

Ball mill is the vital equipment for recrushing after being crushed.

Processing ability:0.5-500t/h

Feeding size:≤25mm

Applied material:cement, silicate, new-type building material, refractory material, fertilizer, ore dressing of ferrous metal and non-ferrous metal, glass ceramics, etc.

[email protected]
Sent Message Chat Online

We Provide You The Highest Quality Mining Machine That Meets Your Expectation.

Need A High Quality Mining Machine For Your Project?

Contact With Us

You May Also Like

china energy saving professional ball mill process

Grinding for example in a ball rod or hammer mill is necessary if the gypsum is to be used for high quality plaster work or for moulding medical or industrial appli ions. Unlike with other cements such as lime and Ordinary Portland Cement special mills for mineral grinding may not be required and the relatively soft gypsum could be

XMQ Series Cone Ball Mill is a lab. Grinding equipment for wet fine grinding of ore 150 × 50 Cone Ball Mill also can be used for dry grinding . It is applied in labs for processing and fine grinding of artificial placer materials and ores in metallurgical building material chemical light coal water conservancy electric power

factors affecting ball mill grinding efficiency

a) Mill Geometry and Speed – Bond (1954) observed grinding efficiency to be a function of ball mill diameter, and established empirical relationships for recommended media size and mill speed that take this factor into account. As well, mills with different length to diameter ratios for a given power rating will yield different material retention times, the longer units being utilized for high reduction ratios, and the shorter ones where overgrinding is of concern. Also related to both material and media retention is the discharge arrangement. South African experience indicates that the faster the pulp removal, the better, as evidenced by the evolution from grates with pulp lifters, to peripheral, and finally, to openend discharge design (Mokken, 1978)

b) Feed Preparation – With more widespread use of coarse ball milling it is increasingly important to present a suitable feed material top-size to the ball mill. Significant inefficiencies are introduced as a result of the need for larger (and, as a result, fewer) grinding balls. Furthermore, as mill performance is related to the complete size distribution of the feed material, all preceeding stages of comminution and classification which influence feed size distribution will have an effect on the performance of the grinding machine

c) Closed Circuit Grinding – Also closely related to the ability of a ball mill to perform most effectively on a particular material size distribution is the increased grinding efficiency observed with increased circulating load and classifier efficiency. Increased circulating load decreases overgrinding and provides the media with an effectively narrower size distribution to work on. However, it meets with diminishing returns in terms of grinding efficiency and practical limitations are reached due to material handling and classifying requirements

d) Feed Composition – The feed to the ball mill may contain one or several other constituents besides the ore itself. The most common of these is water, which displays a variety of effects on the grinding process, depending on the nature of the material and the percent solids of the mix. Dry grinding may require ten to fifty percent more power than wet, although this is offset by greatly diminshed media and liner consumption. The introduction of several percent moisture without heated gas sweeping can virtually halt grinding of fine material, until increased water addition carries the material through the sticky stage into the normal wet grinding range of sixty to eighty percent solids by weight. Within this range, an optimum water content for efficient grinding normally exists depending on the combined effects of a number of prevalent conditions such as pulp viscosity, mill retention time, internal friction and filling of the intersticies of the charge, material transport characteristics, and the mill physical design parameters

factors affecting ball mill grinding efficiency

e) Media Utilization – Matching the material size distribution with the most effective media size distribution is widely practiced, and involves both the media top size selection, as well as graded ball recharging. The principle that larger balls are better for coarse grinding, and small balls for fine grinding is also applied in the cement industry by media classification inside the mill, either with division heads, ox with the use of classifying liners

Selection of grinding ball material is usually evaluated in terms of cost effectiveness with respect to media consumption. However, increases in specific gravity and surface hardness have also been reported to have shown significant improvements in grinding energy use, and are definite areas of interest for further study

Recent Posts