Best Mining Solutions For Everyone, Get a Free Quote.

Zhengzhou, China

[email protected]

Blogs

  1. Home
  2. Ball Mill
  3. design calculations for ball mill

design calculations for ball mill

Ball Mill

Ball Mill

Ball mill is the vital equipment for recrushing after being crushed.

Processing ability:0.5-500t/h

Feeding size:≤25mm

Applied material:cement, silicate, new-type building material, refractory material, fertilizer, ore dressing of ferrous metal and non-ferrous metal, glass ceramics, etc.

[email protected]
Sent Message Chat Online

We Provide You The Highest Quality Mining Machine That Meets Your Expectation.

Need A High Quality Mining Machine For Your Project?

Contact With Us

You May Also Like

ball mill parameter selection & calculation - power

The production capacity of the ball mill is determined by the amount of material required to be ground, and it must have a certain margin when designing and selecting. There are many factors affecting the production capacity of the ball mill, in addition to the nature of the material (grain size, hardness, density, temperature and humidity), the degree of grinding (product size), the uniformity of the feeding material, and the portion of loaded, , and the mill structure (the mill barrel length, diameter ratio, the number of bins, the shape of the partition plate and the lining plate). It is difficult to theoretically determine the productivity of the mill. The grinding mill’s production capacity is generally calculated based on the newly generated powder ore of less than 0.074 mm (-200 mesh). V — Effective volume of ball mill, m3; G2 — Material less than 0.074mm in product accounts for the percentage of total material, %; G1 — Material less than 0.074mm in ore feeding accounts for 0.074mm in the percentage of the total material, %; q’m — Unit productivity calculated according to the new generation grade (0.074mm), t/(m3.h). The values of q’m are determined by experiments or are calibrated in production with similar ore physical properties and the same equipment and working conditions. When there is no test data and production calibration value, it can be calculated by formula (1-3). Di1- Standard mill diameter, m; K’4 — feed size and product size coefficient of mill. G3 G4 — The production capacity of existing or experimental mills with newly designed and parameters (feed size or product size calculated according to the new generation 0.074mm level) is shown in Table 1-6. The values of G1 and G2 above should be calculated according to actual data. If there is no actual data, they can be selected according to tables 1-7 and 1-8

When the filling rate of grinding medium is less than 35% in dry grinding operation, the power can be calculated by formula (1-7). n —- mill speed, r/min; G” —- Total grinding medium, T; η —- Mechanical efficiency, when the center drive, η = 0.92-0.94; when the edge drive, η = 0.86-0.90

\ Critical Speed_ When the ball mill cylinder is rotated, there is no relative slip between the grinding medium and the cylinder wall, and it just starts to run in a state of rotation with the cylinder of the mill. This instantaneous speed of the mill is as follows: N0 —- mill working speed, r/min; K’b — speed ratio, %. There are many layers of grinding media in the mill barrel. It is assumed that the media will be concentrated in one layer, called the “polycondensation layer”, so that the grinding media of this layer will be in the maximum drop, i.e. the calculating speed of the mill when the total impact energy is the largest nj. Therefore, it is theoretically deduced that the reasonable working speed is The working speeds of various mills are shown in Table 1-10. Table 1-10 Working speeds of various mills

ball mill parameter selection & calculation - power

In production practice, there are many factors affecting the motion state of grinding media. Therefore, the appropriate working speed should be selected according to the actual situation. In determining the actual working speed of the mill, the influences of the mill specifications, production methods, liner forms, grinding media types, filling rate, physical and chemical properties of the ground materials, particle size of the grinding materials and grinding fineness of the products should be taken into account. The actual working speed of the mill should be determined by scientific experiments, which can reflect the influence of these factors more comprehensively

Ball loading capacity The volume of the grinding medium is the percentage of the effective volume of the mill, which is called the filling rate of the grinding medium. The size of filling directly affects the number of shocks, the area of grinding and the load of grinding medium in the grinding process. At the same time, it also affects the height of the grinding medium itself, the impact on the material and the power consumption. A kind of The ball loading capacity of the mill can be calculated according to the formula (1-14). Gra — Quantity of Grinding Medium, T. Rho s — loose density of grinding medium, t/m3. Forged steel balls; P=s=4.5-4.8t/m3 cast steel balls P=4.3-4.6t/m3; rolling steel balls P=6.0-6.8t/m3; steel segments P=4.3-4.6t/m3_-filling ratio of grinding medium, When wet grinding: lattice ball mill pi = 40% – 45%; overflow ball mill phi = 40%; rod mill phi = 35%. Dry grinding: When material is mixed between grinding media, the grinding medium expands, and when dry grinding is adopted, the material fluidity is relatively poor, material flow is hindered by abrasive medium, so filling rate is low, and the filling rate is between 28% and 35%. The pipe mill is 25%-35%. The void fraction of grinding medium_k=0.38-0.42 and the quality of crushed material accounts for about 14% of the quality of grinding medium

ball mill design/power calculation- linkedin

The basic parameters used in ball mill design (power calculations), rod mill or any tumbling mill sizing are; material to be ground, characteristics, Bond Work Index, bulk density, specific density, desired mill tonnage capacity DTPH, operating % solids or pulp density, feed size as F80 and maximum ‘chunk size’, product size as P80 and maximum and finally the type of circuit open/closed you are designing for

In extracting from Nordberg Process Machinery Reference Manual I will also provide 2 Ball Mill Sizing (Design) example done ‘by-hand’ from tables and charts. Today, much of this mill designing is done by computers, power models and others. These are a good back-to-basics exercises for those wanting to understand what is behind or inside the machines

Open circuit grinding to a given surface area requires no more power than closed circuit grinding to the same surface area provided there is no objection to the natural top-size. If top-size must be limited in open circuit, power requirements rise drastically as allowable top-size is reduced and particle size distribution tends toward the finer sizes

A wet grinding ball mill in closed circuit is to be fed 100 TPH of a material with a work index of 15 and a size distribution of 80% passing ¼ inch (6350 microns). The required product size distribution is to be 80% passing 100 mesh (149 microns). In order to determine the power requirement, the steps are as follows:

ball mill design/power calculation- linkedin

The ball mill motor power requirement calculated above as 1400 HP is the power that must be applied at the mill drive in order to grind the tonnage of feed from one size distribution. The following shows how the size or select the matching mill required to draw this power is calculated from known tables ‘the old fashion way’

The value of the angle “a” varies with the type of discharge, percent of critical speed, and grinding condition.  In order to use the preceding equation, it is necessary to have considerable data on existing installations. Therefore, this approach has been simplified as follows:

ball mill parameter selection&calculation- power

JXSC supply ball mill, rod mill has been 35 years. Contact us for a quotation. Hot products: jaw crusher, impact crusher, cone crusher, ball mill, shaker table, centrifugal separator, jig, magnetic separator, flotation, gold trommel, trommel scrubber, gold washing plant, and so on

The production capacity of the ball mill is determined by the amount of material required to be ground, and it must have a certain margin when designing and selecting. There are many factors affecting the production capacity of the ball mill, in addition to the nature of the material (grain size, hardness, density, temperature and humidity), the degree of grinding (product size), the uniformity of the feeding material, and the portion of loaded, , and the mill structure (the mill barrel length, diameter ratio, the number of bins, the shape of the partition plate and the lining plate). It is difficult to theoretically determine the productivity of the mill. The grinding mill’s production capacity is generally calculated based on the newly generated powder ore of less than 0.074 mm (-200 mesh). V — Effective volume of ball mill, m3; G2 — Material less than 0.074mm in product accounts for the percentage of total material, %; G1 — Material less than 0.074mm in ore feeding accounts for 0.074mm in the percentage of the total material, %; q’m — Unit productivity calculated according to the new generation grade (0.074mm), t/(m3.h). The values of q’m are determined by experiments or are calibrated in production with similar ore physical properties and the same equipment and working conditions. When there is no test data and production calibration value, it can be calculated by formula (1-3). Di1- Standard mill diameter, m; K’4 — feed size and product size coefficient of mill. G3 G4 — The production capacity of existing or experimental mills with newly designed and parameters (feed size or product size calculated according to the new generation 0.074mm level) is shown in Table 1-6. The values of G1 and G2 above should be calculated according to actual data. If there is no actual data, they can be selected according to tables 1-7 and 1-8

When the filling rate of grinding medium is less than 35% in dry grinding operation, the power can be calculated by formula (1-7). n —- mill speed, r/min; G” —- Total grinding medium, T; η —- Mechanical efficiency, when the center drive, η = 0.92-0.94; when the edge drive, η = 0.86-0.90

\ Critical Speed_ When the ball mill cylinder is rotated, there is no relative slip between the grinding medium and the cylinder wall, and it just starts to run in a state of rotation with the cylinder of the mill. This instantaneous speed of the mill is as follows: N0 —- mill working speed, r/min; K’b — speed ratio, %. There are many layers of grinding media in the mill barrel. It is assumed that the media will be concentrated in one layer, called the “polycondensation layer”, so that the grinding media of this layer will be in the maximum drop, i.e. the calculating speed of the mill when the total impact energy is the largest nj. Therefore, it is theoretically deduced that the reasonable working speed is The working speeds of various mills are shown in Table 1-10. Table 1-10 Working speeds of various mills

ball mill parameter selection&calculation- power

In production practice, there are many factors affecting the motion state of grinding media. Therefore, the appropriate working speed should be selected according to the actual situation. In determining the actual working speed of the mill, the influences of the mill specifications, production methods, liner forms, grinding media types, filling rate, physical and chemical properties of the ground materials, particle size of the grinding materials and grinding fineness of the products should be taken into account. The actual working speed of the mill should be determined by scientific experiments, which can reflect the influence of these factors more comprehensively

Ball loading capacity The volume of the grinding medium is the percentage of the effective volume of the mill, which is called the filling rate of the grinding medium. The size of filling directly affects the number of shocks, the area of grinding and the load of grinding medium in the grinding process. At the same time, it also affects the height of the grinding medium itself, the impact on the material and the power consumption. A kind of The ball loading capacity of the mill can be calculated according to the formula (1-14). Gra — Quantity of Grinding Medium, T. Rho s — loose density of grinding medium, t/m3. Forged steel balls; P=s=4.5-4.8t/m3 cast steel balls P=4.3-4.6t/m3; rolling steel balls P=6.0-6.8t/m3; steel segments P=4.3-4.6t/m3_-filling ratio of grinding medium, When wet grinding: lattice ball mill pi = 40% – 45%; overflow ball mill phi = 40%; rod mill phi = 35%. Dry grinding: When material is mixed between grinding media, the grinding medium expands, and when dry grinding is adopted, the material fluidity is relatively poor, material flow is hindered by abrasive medium, so filling rate is low, and the filling rate is between 28% and 35%. The pipe mill is 25%-35%. The void fraction of grinding medium_k=0.38-0.42 and the quality of crushed material accounts for about 14% of the quality of grinding medium

designmethod ofball millby sumitomo chemical co., ltd

JXSC supply ball mill, rod mill has been 35 years. Contact us for a quotation. Hot products: jaw crusher, impact crusher, cone crusher, ball mill, shaker table, centrifugal separator, jig, magnetic separator, flotation, gold trommel, trommel scrubber, gold washing plant, and so on

The production capacity of the ball mill is determined by the amount of material required to be ground, and it must have a certain margin when designing and selecting. There are many factors affecting the production capacity of the ball mill, in addition to the nature of the material (grain size, hardness, density, temperature and humidity), the degree of grinding (product size), the uniformity of the feeding material, and the portion of loaded, , and the mill structure (the mill barrel length, diameter ratio, the number of bins, the shape of the partition plate and the lining plate). It is difficult to theoretically determine the productivity of the mill. The grinding mill’s production capacity is generally calculated based on the newly generated powder ore of less than 0.074 mm (-200 mesh). V — Effective volume of ball mill, m3; G2 — Material less than 0.074mm in product accounts for the percentage of total material, %; G1 — Material less than 0.074mm in ore feeding accounts for 0.074mm in the percentage of the total material, %; q’m — Unit productivity calculated according to the new generation grade (0.074mm), t/(m3.h). The values of q’m are determined by experiments or are calibrated in production with similar ore physical properties and the same equipment and working conditions. When there is no test data and production calibration value, it can be calculated by formula (1-3). Di1- Standard mill diameter, m; K’4 — feed size and product size coefficient of mill. G3 G4 — The production capacity of existing or experimental mills with newly designed and parameters (feed size or product size calculated according to the new generation 0.074mm level) is shown in Table 1-6. The values of G1 and G2 above should be calculated according to actual data. If there is no actual data, they can be selected according to tables 1-7 and 1-8

When the filling rate of grinding medium is less than 35% in dry grinding operation, the power can be calculated by formula (1-7). n —- mill speed, r/min; G” —- Total grinding medium, T; η —- Mechanical efficiency, when the center drive, η = 0.92-0.94; when the edge drive, η = 0.86-0.90

\ Critical Speed_ When the ball mill cylinder is rotated, there is no relative slip between the grinding medium and the cylinder wall, and it just starts to run in a state of rotation with the cylinder of the mill. This instantaneous speed of the mill is as follows: N0 —- mill working speed, r/min; K’b — speed ratio, %. There are many layers of grinding media in the mill barrel. It is assumed that the media will be concentrated in one layer, called the “polycondensation layer”, so that the grinding media of this layer will be in the maximum drop, i.e. the calculating speed of the mill when the total impact energy is the largest nj. Therefore, it is theoretically deduced that the reasonable working speed is The working speeds of various mills are shown in Table 1-10. Table 1-10 Working speeds of various mills

designmethod ofball millby sumitomo chemical co., ltd

In production practice, there are many factors affecting the motion state of grinding media. Therefore, the appropriate working speed should be selected according to the actual situation. In determining the actual working speed of the mill, the influences of the mill specifications, production methods, liner forms, grinding media types, filling rate, physical and chemical properties of the ground materials, particle size of the grinding materials and grinding fineness of the products should be taken into account. The actual working speed of the mill should be determined by scientific experiments, which can reflect the influence of these factors more comprehensively

Ball loading capacity The volume of the grinding medium is the percentage of the effective volume of the mill, which is called the filling rate of the grinding medium. The size of filling directly affects the number of shocks, the area of grinding and the load of grinding medium in the grinding process. At the same time, it also affects the height of the grinding medium itself, the impact on the material and the power consumption. A kind of The ball loading capacity of the mill can be calculated according to the formula (1-14). Gra — Quantity of Grinding Medium, T. Rho s — loose density of grinding medium, t/m3. Forged steel balls; P=s=4.5-4.8t/m3 cast steel balls P=4.3-4.6t/m3; rolling steel balls P=6.0-6.8t/m3; steel segments P=4.3-4.6t/m3_-filling ratio of grinding medium, When wet grinding: lattice ball mill pi = 40% – 45%; overflow ball mill phi = 40%; rod mill phi = 35%. Dry grinding: When material is mixed between grinding media, the grinding medium expands, and when dry grinding is adopted, the material fluidity is relatively poor, material flow is hindered by abrasive medium, so filling rate is low, and the filling rate is between 28% and 35%. The pipe mill is 25%-35%. The void fraction of grinding medium_k=0.38-0.42 and the quality of crushed material accounts for about 14% of the quality of grinding medium

Recent Posts